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ABSTRACT

The steady-state solution of the system of equations consisting of the full Navier-Stokes equa-

tions and two turbulence equations has been obtained using a multigrid strategy on unstruc-

tured meshes. The flow equations and turbulence equations are solved in a loosely coupled

manner. The flow equations are advanced in time using a multi-stage Runge-Kutta time step-

ping scheme with a stability bound local time-step, while the turbulence equations are

advanced in a point-implicit scheme with a time-step which guarantees stability and positivity.

Low Reynolds number modifications to the original two-equation model are incorporated in a

manner which results in wen behaved equations for arbitrarily small wall distances. A variety

of aerodynamic flows are solved for, initializing all quantities with uniform freestream values.

Rapid and uniform convergence rates for the flow and turbulence equations are observed.

This research was supported under the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Sci-

ence and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

The use of unstructured meshes has become more widespread in recent years due to the

ease with which complex geometries can be handled and the possibility of enhancing the solu-

tion accuracy and efficiency through adaptive meshing techniques. To date, most of the

successes of unstructured mesh techniques have been in computing inviscid flows in two and

three dimensions over arbitrary geometries. However, more recently, solutions of the Navier-

Stokes equations on unstructured meshes have been reported [1,2,3,4,5]. The main obstacles to

efficiently computing high-Reynolds-number flows on unstructured meshes are due to the

required grid stretching and the turbulence model. For high-Reynolds-number flows over

streamlined bodies, viscous effects are confined to thin boundary-layer and wake regions,

which can only be resolved efficiently using high aspect ratio elements. One approach [3,5] is

to fit a thin local mesh of structured high aspect ratio quadrilaterals in the viscous regions, and

fill the remainder of the domain with an unstructured mesh. The other approach consists of

filling the entire domain with an unstructured mesh which contains highly stretched triangular

elements in the viscous regions [4]. In this work, the latter approach has been pursued, in the

interest of developing a more general method capable of dealing with a wider variety of flows,

such as flows with confluent boundary layers, or mixing wakes, and also to enable the

straight-forward implementation of adaptive meshing techniques throughout all regions of the
flow-field. The numerical scheme must therefore be formulated such that the accuracy and

convergence are not seriously affected by the presence of highly stretched triangular elements.

The most commonly employed turbulence models for compressible flow calculations are

of the algebraic mixing-length type [6]. These models have been shown to produce good

results for attached turbulent boundary layers and mildly separated flows using structured

meshes, and have also been implemented for non-trivial geometries on unstructured meshes [7].

Although such models can be made inexpensive and computationally robust even in the context

of unstructured meshes, they lack the generality required for dealing with completely arbitrary

geometries, and their ability in predicting flows with multiple confluent shear layers and large

amounts of separation is at best limited. Two equation models, on the other hand, offer the

possibility of dealing with the more complicated flows which are often associated with the

complex geometries for which unstructured meshes are so well suited. In principle, the imple-

mentation of such models on unstructured meshes can be accomplished in a straight-forward

fashion, simply by discretizing and integrating the turbulence equations in a manner analogous

to that employed for the mean flow equations. However, field-equation turbulence models have

often proved to be extremely difficult to integrate to steady-state, exhibiting stiff or unstable

numerical behavior in regions very close to the wall, as well as in the far-field. The use of

multigrid to solve the turbulence equations has recently been reported by several authors [8,9],

using a Ni-type scheme on structured meshes. In this work, a multigrid strategy which has

previously been developed for the Euler and Navier-Stokes equations on unstructured meshes

[4,10] is extended to solve for the two turbulence equations as well.

2. GOVERNING EQUATIONS

The governing equations are obtained by Favre averaging the Navier.Stokes equations,

and modeling the Reynolds stress and heat flux terms by the Boussinesq assumption. In con-

servative form, these equations are written as

+ - (1)
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where w is the solution vector and fe and & are the cartesian components of the convective
fluxes
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p = (T-1)p [E (u 22v2) ]

The viscous fluxes fv and g_ are given by

crxx (5"T

f'= a.. gv= c.

u cr_ +v crxy-q_ u %x +v o'_ -%

where cr represents the stress tensor, and q the heat flux vector, which are given by

2 2
cr_ = 25 + _t,)u. - -_ + lat)(u.+vy)- _-pk (5)

2 2
cry, = 20x + _t,)vy - _Oa + Iz,)(u_+vy) - _pk (6)

cr_ = cry, = _ + _t,)(uy+v, ) (7)

bP--
_.__Z_ It+ It, .__.p__

q* = y-1 ( Pr _rt ) ax (8)

oP

_ .__Z_ _E_ I_, ).__p_
qY--T-1 ( Pr + Pr, ay (9)

I_ represents the molecular viscosity, and lat denotes the turbulent eddy viscosity, which must

be computed by a suitable turbulence model. Pr is the laminar Prandtl number, which is taken

as 0.7 for air, Pr t is the turbulent Prandtl number, taken as 0.9, and g is the ratio of specific
heats of the fluid.

The high Reynolds number k-e turbulence model originally described by Launder and

Spalding [11], can similarly be written as

aw af e ag e af _ agv

at + -_x + ay - ax + -_y + h (m)
where w, f_ and & are now given by

w= pe f_= pu_ &= pve (11)

The diffusive fluxes f_ and g_ are given by

lat 0k lat Ok

fv = I-tt a_ g_ = la,/)E (12)

and the source term h is given by

(3)

(4)

In the above equations, p represents the fluid density, u and v the x an_ y components of fluid

velocity, E the total energy, and p is the pressure which can be calculated from the equation of

state of a perfect gas
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h= _ p 2 _2
c1 0 , -  spk) - T

where the production term P and the term S in two dimensions are given by

The eddy viscosity is calculated as

+ - uxvy)+ (uy+ vx)2

S = ux + vy

(13)
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and the flux definitions follow from equations (2),(4),(11), and (12).

The solution procedure consists of discretizing these equations in space on an unstruc-

tured mesh, and then integrating the discretized equations in time until the steady-state solution

is obtained. The basic strategy pursued in this work involves the use of a finite-element Galer-

kin discretizatJon technique, in conjunction with an unstructured multigrid integration technique

to solve for the steady-state. Although all six equations of the governing system are solved

simultaneously in the multigrid strategy, the flow equations are only loosely coupled to the tur-

bulence equations (through the value of I-h), and we choose to employ somewhat different base

grid solvers for the flow equations and the turbulence equations.

3. SPATIAL DISCRETIZATION

The equations governing the mean flow are discretized using a Galerkin finite-element

approach [4]. The flow variables are stored at the vertices of the triangles. The convective

fluxes are computed at the vertices of the triangles and assumed to vary linearly over the tri-

angular elements. For the viscous terms, the flow variables themselves are assumed to vary

linearly over the triangular elements of the mesh, and the required velocity gradients in the

expression for the viscous stresses are thus computed at the centers of the triangular elements.

Additional artificial dissipation terms are required to ensure the stabiIity of the convective

and k also appears in the normal stresses in equation (5). The constants appearing in the

above equations are given the standard values recommended in [11], i.e.

C, = 0.09 cYk= 1.0 or, = 1.3 C1 = 1.44 C2 = 1.92 (16)
These equations are coupled to the governing equations for the mean flow and exhibit a similar

structure. Therefore, a single system of equations which simultaneously governs the flow and
turbulence quantities may be written as

bw bfc bgc bf_ bg_

b--t-+'-'_-x + by - bx +--_-y +h (17)

where the solution vector and the source term are now given by

0

0

0

h = 0 (18)

pC_,k 2
= - (15)gt
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termsandtheseareconstructedasa blendof aLaplacianandbiharmonicoperatorsin thecon-
servedvariables,designedto ensuresecond-orderaccuracythroughouttheflow-field,exceptin
thevicinity of a shockwherefirst-orderaccuracyis recovered.For the turbulenceequations,
thediffusivetermsaresimilarlydiscretizedusingaGalerkinfinite-elementapproach,assuming
linearvariationsof theconservedvariablesoverthetriangularelements.Thevelocity gradients
in the source terms are also constructed assuming linear elements. The convective terms, how-

ever, are constructed using first-order upwinding. Although only first-order accurate, this

approach is employed since it helps ensure stability and positivity of the conserved variables

throughout the integration procedure, as will be shown. Furthermore, in regions where convec-

tion is small compared to the diffusion terms or the source terms, such as in the logarithmic

law of the wall region, the scheme reverts to second order accuracy. In future work however, a

second-order accurate implementation of the convective terms may be pursued.

4. INTEGRATION SCHEME

The discretized mean flow equations are integrated in time using an explicit five-stage

Runge-Kutta time-stepping scheme, where the convective terms are evaluated at every stage,

and the dissipative terms are only evaluated at the first, third and fifth stages. This scheme,

which has previously been described [4,12], has been particularly devised to ensure rapid

damping of high-frequency errors, and is thus well suited to drive the multigrid algorithm.

Convergence is accelerated by the use of local time-stepping, and implicit residual averaging.

In principle, the turbulence equations may be integrated in time using the same explicit

scheme. However, the presence of source terms imposes a further time-step restriction. If the

flow equations and turbulence equations are integrated in a fully coupled manner, the minimum

local time-step from the flow and turbulence equations must be employed. In regions where the

source terms dominate, this may lead to slow convergence. If, on the other hand, the flow

equations and turbulence equations are integrated in an uncoupled explicit manner, the tur-

bulence equations may significantly lag the flow equations and thus inhibit convergence to the

steady-state solution. In order to advance the turbulence quantities at the same rate as the flow

equations, the source terms must be treated implicitly. However, rather than simply treat the

source terms implicitly, the system of iurbuience equations is integrated in a point-implicit

manner. Thus we rewrite the discretized turbulence equations as

AWl
- R(wi) + n(wi) (19)At

where R(wi) represents the discretized convective and diffusive terms, which depend on the

values of w at i and at neighboring nodes, and H(wi) represents the discretized source terms,

which only depend on the values of w at i. The above equation is then Iinearized about the

values at i which, upon solving for Aw_ yields

[1At 3wbR bH]-l_wJ _R tt(wi)]hwi = t. (wi) + (20)

The Runge-Kutta scheme described above is now replaced by a multi-stage implicit scheme,

where the qth stage is given by

w fq> = w (°) + _-_lAt ,w,, + tlCq-l)(w i (21)

where the % denote the Runge-Kutta coefficients for the qth stage, and At is the local time

step. In this manner, the high-frequency damping characteristics of the original scheme are

approximated, while the time-step restriction due to the source terms is alleviated. The precise
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valueof thelocal time-stepAt employedis onewhichguaranteesstabilityaswell aspositivity
of theturbulencequantities.

5. STABILITY AND POSITIVITY CONSIDERATIONS

One method to guarantee stability of the system is to ensure that the matrix to be inverted

is diagonally dominant. This is not a necessary condition for stability, although it is sufficient.

This can obviously be achieved by choosing At to be sufficiently small. However, the reason

for employing a point-implicit approach now becomes apparent. Since the two turbulence equa-
OR

tions are only coupled through their source terms, the _-w matrix is diagonal. The contribution

from the diffusive terms is strictly negative, as well as that from the first-order upwinded con-

vective terms. Hence, these terms, when subtracted from the diagonal of the matrix to be

inverted, increase the diagonal dominance, and hence permit the use of a larger time-step. The

maximum value of At is found by equating each diagonal element to its corresponding off-

diagonal element in the coefficient matrix. The actual value employed for the time-step is
taken as the minimum between the two values obtained by the diagonal dominance test, and

the value determined by local stability analysis for an explicit scheme in the absence of source

terms.

Physically, k and e represent quantities which must remain non-negative. Thus a further

time-step restriction is required to ensure positivity. For a simple 2x2 system, this can easily be

derived analytically. Thus, we require that the new update to the turbulence variables be such

that

or, when Aw < 0

w + Aw > otw 0<ct<l

IAwl < (1-(z) w 0<c_<l (22)

Substituting into equation (20), and using Cramer's rule to evaluate the inverse of the 2x2

matrix, we obtain two quadratic inequalities for At, i.e. one for positivity of k, and one for e.

The time step is then limited by the smallest positive root of the two quadratic equations.

6. MULTIGRID STRATEGY AND STEADY-STATE CONSIDERATIONS FOR THE

k - e EQUATIONS

A multigrid strategy is employed to accelerate the solution of the system of mean flow

and turbulence equations to steady-state. In the context of unstructured meshes, multigrid may

be applied by generating a sequence of non-nested coarse and fine meshes, and transferring the

variables, residuals and corrections back and forth between the various meshes using linear

interpolation. The pattems for interpolating between non-nested unstructured meshes are deter-

mined in a preprocessing stage, using an efficient search algorithm. The present multigrid stra-

tegy has previously been described in detail for the Euler and Navier-Stokes equations [4,10],

and thus will not be repeated here. In previous multigrid applications for turbulent flows using

algebraic models on structured and unstructured meshes [7,13], the eddy viscosities are only

computed on the finest grid, and interpolated to the coarser meshes. Since the eddy viscosity

represents the main coupling between the flow equations and the turbulence equations, a simi-

lar approach has been adopted in the present context, thus ensuring a more accurate representa-

tion of this quantity on all grid levels. However, since the eddy viscosity is only computed on

the finest grid, it is effectively held constant throughout an entire multigrid cycle, and the

source terms must be linearized accordingly. Making use of equations (11) and (13), the linear-

ization of the source terms on all grids is therefore taken as
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2
_)H - ys -t

- (23)
_w - Cll.ttP _ _2 _ttP 2

P k2 + C2" _- C 1 [ p---_-- _-S ] - 2C2" _-

At this point it is worth commenting on what types of errors may be expected to be handled

efficiently by a multigrid strategy. Multigrid is an effective device for relieving the spatial

stiffness associated with a set of discretized equations, which is achieved by time-stepping on

coarser grids. The turbulence equations contain spatial terms such as convection and diffusion,

but the source terms are purely local terms. In fact, in the absence of convection and diffusion,

the equations become completely uncoupled in space, and a properly formulated multigrid

algorithm should yield vanishingly small corrections in such a case. Thus, it is important for

the base grid solver to efficiently eliminate errors associated with these terms. From another

point of view, if a purely explicit scheme were employed, a time-step restriction would arise
from the convection, diffusion and source terms. While the first two restrictions are relaxed

when going to coarser grids, the latter remains the same on all grid levels, effectively prevent-

ing the use of large time-steps on coarse grids and severly limiting the overall rate of conver-

gence. The use of a point-implicit scheme, therefore, relieves any such restrictions, and results

in overall convergence rates similar to that achieved with the mean flow equations.

At steady-state, the turbulence equations do not necessarily exhibit a unique solution. In

regions where the production term Ix,P vanishes, k = 0, e = 0 is an obvious solution which can

be found by inspection of equations (10) and (13). However, the eddy viscosity, which is given
by equation (15), becomes a ratio of two vanishing quantities, and is thus undefined. The time

dependent turbulence equations however, are not ill-posed. On the contrary, the value of the

constant C2 has been carefully chosen to ensure that k, e and gt all vanish asymptotically for

an isotropic decaying turbulence. For an isotropic turbulence, all spatial terms as well as the

production term vanish, and equations (10) and (13) reduce to

ark
- - e (24)

dt
E 2

de _ _ C2-
dt k

Solution of this system yields the following asymptotic behavior

1 C2 C2-2

k = t c2-1 c2-1 k2 c2-1e = t = t t--,oo (25)
£

which, for the current value of 1 < C2 < 2 indicates that all quantities vanish for large t.

Hdnce_Fn-order to converge-to the appropriate stea-dy:state solution, it is important for any

numerical scheme to respect the relative asymptotic time behavior of k and e throughout the

convergence process. For the base grid solver, this is achieved by employing the maximum

time-step for-thesystem of two turbu]enceequationswhich ensures stability and positivity; let-

ting k or e become negative, or taking too large time steps and subsequently limiting the

updated values of k or e invariably leads to unrealistic values of g, in the far-field. Within the

multigrid Strate-_, corrections interpo]aied back from the coarser grids may cause k or e to

become negative. Rather than lim!t _e-corrections, they are simply_ omitted at any point

where positivity cannot otherwise be guarantee_. In this manner, the (point-wise) time con-

sistency is riot- vi61ated, and the overall eTEct ]g simply to lag such points by the effective

coarse grid time step. An alternate approach would be to recompute the coarse grid corrections

employing a smaller time step which guarantees positivity. However, due to the recursive
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natureof multigrid, this represents a non-trivial task.

7. BOUNDARY AND INITIAL CONDITIONS

The derivation of the above turbulence transport equations is made under the hypothesis

of a large Reynolds number flow. Thus, in regions close to the wall, such as in the viscous

sublayer where molecular effects become important, these equations are not valid. In order to

avoid integrating the turbulence equations in these region we make use of wall functions. In

this approach, the goveming equations for the flow and the turbulence are integrated up to a

distance y = y_ away from the wall. The flow in the remaining region 0 < y < y_ is assumed to

obey the law of the wall i.e.

U 1 In pU_-- _ + 5.5 (26)
U_ r IX

At each time-step in the solution procedure of the governing equations, an estimate of the velo-

city U at y = y_ is obtained. From this, the value of the wall shear stress can be obtained by

solving equation (26) implicitly for U_ ( using a Newton-Raphson method). This estimate of

the wall shear stress is then employed as a boundary condition on the momentum equation for

the mean flow, and results in Dirichlet wall boundary conditions for k and e. In practice the

point y = y, is very close to the wall so that it may be approximately placed on the wall, and

the boundary conditions at y = Yn may be imposed at the wall surface. For the momentum

equation, this results in a wall slip velocity U = U(,y,).

In the far-field, k and e are assigned freestream values at inflow boundaries, and simple

extrapolation is employed at outflow boundaries. Initial conditions on k and e are obtained by

imposing a level of freestream turbulence from which k is determined, and e is evaluated from

equation (15) in order to produce a low value of freestream eddy viscosity (I.t, < 1). However,

since the present formulation results in a small value of _t, in all regions of the flow field

where production is negligible, the converged solution is relatively insensitive to the initial

values of k and e. The mean flow equations are initialized using uniform freestream flow con-

ditions, and applying the tangential slip velocity boundary condition (as for an inviscid flow).

Throughout the integration process, the wall shear stress obtained from equation (26), which is

fed back into the momentum equation, retards the flow near the wall, thus creating a boundary

layer profile.

8. RESULTS USING WALL FUNCTIONS

Two attached flow cases have been computed using the multigrid implementation of the

high-Reynolds-number turbulence model described above. The first case consists of transonic

flow past an RAE 2822 airfoil. The freestream Mach number is 0.729, the incidence is 2.31

degrees, and the Reynolds number is 6.5 million. This case (case 6) has been well documented

both experimentally [14] and computationally [7,13,15] on structured and unstructured meshes.

The mesh employed for this case is depicted in Figure 1. It contains 12,823 vertices and exhi-

bits a normal spacing of 10-4 chords at the airfoil surface, which positions the first point off the

wall in the logarithmic law of the wall region. The computed Mach contours for this case are

shown in Figure 2, while the resulting eddy viscosity distribution is given in Figure 3. A

smooth distribution of eddy viscosity throughout the boundary-layer and wake regions, and

vanishingly small values in the inviscid regions of flow are observed. The computed surface

pressure distribution is compared with experimental data [14] in Figure 4, showing good

overall agreement. The convergence rate of the system of equations is depicted in Figure 5, by

plotting the RMS average of the density residual, and the residual of pk throughout the flow
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field,versusthenumberof multigridcycles.As canbeseen,theflowequationsandturbulence
equationsconvergewith the sameasymptoticrates.Theresidualsarereducedby roughly6
ordersof magnitudeover200cycles,yieldinganoverallconvergencerateof 0.93

Thesecondcaseinvolvesflow overa high-liftingfour-elementairfoil.Thiscaseis useful
in demonstratingthecomplexgeometriesandresultingflow-fieldswhichcanbehandledby the
presentmethodology.Themeshemployedis depictedin Figure6. It containsatotalof 51,100
verticesanda normalspacingof 2x10-4chordsoff thewall for eachairfoilelement.Thecom-
putedMachcontoursareshownin Figure7, while theresultingeddyviscositydistributionis
givenin Figure8. Theeasewith whichmultiplewakesandconfluentboundarylayersmaybe
handledby the presentapproachis evidentfrom thefigures.Thecomputedsurfacepressure
distributionis seento comparefavorablywith experimentalwind-tunneldatafrom [16] in Fig-
ure9. It shouldhoweverbepointedout thatsuchfavorableagreementis in largepartdueto
theattachednatureof theflow.Themultigridconvergenceratesof thedensityequationandthe
k equation are depicted in Figure 10, where both equations are seen to achieve approximately

the same asymptotic rates, decreasing by 4 orders of magnitude over 300 cycles.

9. LOW REYNOLDS NUMBER TURBULENCE MODEL MODIFICATIONS

While the use of the high-Reyn0!ds-number turbulence equations in conjunction with wall
functions is useful for a large class of wall bounded flOWS, it is nevertheless limited to flows

where a logarithmic law of the wall region exists, and is thus strictly not valid for separated

flows. An alternative approach is tO modify the turbulence equations in order to account for

low-Reynolds-number effects. Many such modifications have been proposed over the years

with varying degrees of success [17]. One common feature of all such modifications is that

they have proved exceedingly diffiCuit to _tegrate numericany very close to the wall. The aim

of the present work is to develop an efficient and robust technique for integrating such models,

rather than reformulating or advocating any one model in particular. With this in mind, we

chose to implement the simplest possible low-Reynolds-number model that has been demon-

strated to produce good results for simple pmblemsi= with possible extensions to more complex

models should the original version prove inadequate for more complicated flows. To this end,

the modifications proposed by Speziale, Abid and Anderson [18] have been implemented. The

modified turbulence equations, now given in vector form, can be written as

+ u.V(oe) = v. + )7 + c (g,e-gsok)- -_t

pC_ fj, k 2
i.l.t -

E

3.45. -v'-+

fl_ = (1 + R---_-er)tanh(--_6--)
+

f2 = [ 1 - exP(4.--_). ]2

with boundary conditions at the wall given by

k =0

tl _2k
£ --

p 3y2

and employing the following values for the constants

(27)

(28)
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2 .-Ret _2
CI_= 0.09 _rk = 1.36 c c = 1.36 C1 = 1.44 C2 = 1.83 [1 - --_-exp(--_) ]

k 2

where Re, = p_--_- is the turbulence Reynolds number. As can be seen, no extra source terms

are introduced, and only two damping functions are required. This model is similar in form to

the Lam-Bremhorst model [19], with the notable difference that all damping functions depend

solely on y+. The evaluation of such functions requires the knowledge of the distance of each

point from the closest wall. In the context of unstructured meshes, this information can be con-

structed through the use of a generalized distance function, as outlined by Barth [20]. As with

most low-Reynolds-number turbulence models, the current form of the model has been

reported to be extremely stiff in near-wall regions, generally requiring the prescription of initial

profiles in k and e in order to guarantee convergence to steady-state. Such techniques are con-

sidered impractical for complex aerodynamic flows, and thus a more robust solution strategy

has been pursued. The difficulties associated with the near-wall regions can be assessed by

inspection of equations (27). When the wall boundary condition k = 0 is substituted into the e

equation, it is seen to result in a singularity, since k appears in the denominator of this equa-

tion. Since f2 also vanishes at the wall, this singularity is in principle removable. However,

the numerical integration of the e equation in its present form will only be well behaved if f2

and k have the same asymptotic behavior near the wall throughout the integration procedure,

thus the need for startup profiles. The approach taken in this work is to remove the singularity

by solving for a new variable defined as

k = k f 2 or /_ = k (29)
f2

Upon substituting this expression into equation (27), and using the chain rule to evaluate the

gradient operators, one obtains the new set of equations

+ -_2[g'e- spl_y2- p_l

a ,,)+ _ [ [ v0a + - 0u ] .vf2 + _ + --)v j2 ] f_ (30)Sk Sk

1 I.tf
+ _-2 [2_+-)vf2"v_]sk

(_ __c e] IXtP e 2 e2at + u.V(pe) = V. + )V + Cl f2 _ _CiSpe- Czp-_

While the £ equation now looks rather complicated, the new terms are only significant in the

region f2 '_ 1, and in fact, although all terms have been included, only the /_V2f2 term has

been found to have a significant effect on the overall solution. At the wall, we have

f2=O, Vf2 = O, V2f2 > 0

as well as

Ixt=0 P =0 S =0 u =0

The boundary condition k --0 implies /_ bounded at the wall. Since f2 which appears as a

denominator in the fight-hand side of the/_ equation vanishes, we require the non vanishing

terms in the numerator to sum to zero, thus yielding the condition

/_ = .__p_e (31)
IXV2f2
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Uponsubstitutingthisexpressioninto theeequation,with u = 0, Ixt = 0, and S = 0 one obtains

a modified Helmoltz equation for e at the wall in the steady-state

V[_tVe 1 - C2txV2f2_ = 0 (32)
This equation is well behaved and simple to integrate numerically. The boundary condition

employed for e is taken to be

= 0 (33)
While it is realized that this condition may not be entirely accurate at the wall [21], it is used

at this initial stage for simplicity and may be modified in further work.

In regions removed from the wall, the e equation remains well behaved. The k equation

on the other hand contains the source term/_ V2f2.

has the following properties

V2f2 > 0
V2f2 < 0

V:f2, which can be approximated as --

y+ < 3.4 (34)
y+ > 3.4

where y+ = 3.4 represents the point of inflection in the f2 function. In regions where V2f2 is

negative or zero, the k equation is well behaved. However, V2f2 large and positive represents a

growing source term, which can be numerically unstable. However, since the point y+ = 3.4 is

very close to the wall, and within the laminar sublayer, k can be approximated by the relation

k + = constant . y+2 (35)
or

= /_,_u (36)

[1 - exp(_.--_)] 2

which from direct simulations [22], is generally known to be valid up to y+= 10. Finally, in

regions far away from the wail, the damping functions become unity, their derivatives all van-

ish, and the original high-Reynolds-number equations are recovered, albeit with the new values

of the constants advocated in [i8]. Thus, in Summary, the e equation given in the form (30) is

employed throughout the entire flow-field, except at the wall, where the form (32) is used. For

the/_ equation, the fo_ g|ven by equation (30) is employed from the far-field up to y+= 3.4,

which is within the laminar sublayer. Below this value of y+, equation (36) is employed with

the boundary condition for/_ given by equation (31).
..... .

The multigrid strategy previously described for the high-Reynolds number turbulence

equatiOnS Carries over in a straight-forward manner. The linearization of the source terms is
now taken as

2 _tt. V2f 2

= E2

aw C C.f .f 2 e + C2 -F

1

f2

2 e
- - c1s - 2c2- 

(37)

where the production term in the e equation has been simplified by the definition of Ix, in equa-

tions (27), in order tO remove k from the denominator, The damping functions are evaluated

only on the f_nest grid, and interpolated up to the coarser grids, thus affording a more con-

slste-nt representation of the ecluat-ions on all grid levels. A full multigrid strategy is employed,

where grid sequencing is used to provide an initial solution for the fine grid. In general, it has

been found advantageous to use the high-Reynolds-number model with wall functions on
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coarse grids, and the low-Reynolds-number model on the finest grid when grid sequencing,

thus rapidly setting up appropriate levels of eddy viscosity on the finest grid.

10. RESULTS

The present implementation of the low-Reynolds-number turbulence model has been

employed to compute the turbulent boundary layer over a flat plate, the transonic flow over an
RAE 2822 airfoil, and the transonic flow over a two-element airfoil.

The mesh employed to compute the flat plate boundary layer case is depicted in Figure

11. It contains 24 points ahead of the plate, 48 points along the plate in the streamwise direc-

tion, and 80 points in the direction normal to the plate. The freestream Mach number is 0.3,

and the Reynolds number of the flow, based on the length of the plate is 10 million. The first

point normal to the plate is located at a distance of 2x 10"_ plate lengths, which lies in the

region y÷<l. The resulting velocity profiles are plotted in Figures 12 and 13, both in physical

coordinates, and logarithmic wall coordinates, and compared with the weU known 1/7th power

law distribution, and logarithmic law of the wall profile. The computed skin friction is plotted

in Figure 14, versus the experimental data taken from [23]. The resulting distributions of k

and e are shown in Figures 15 and 16. The well known peaks of k and e are observed, and a

non-zero value of e at the wall is obtained. These distributions are however slightly different

from those obtained previously with the same model [18], and may be attributed either to the

different boundary condition, or to the near-wall grid resolution. The overall flow quantities are

nevertheless well predicted, as shown in Figures 12 through 14.

The transonic flow case over the RAE 2822 airfoil presented in the previous section has

been recomputed with the low-Reynolds-number turbulence model (Mach= 0.729, Incidence =

2.31 degrees, Re = 6.5 million). The mesh employed is similar to that shown in Figure 1,

except that the normal spacing at the wall is now reduced to lx 10-5 chords, which results in

the first mesh point off the wall in the region 1 < y÷ < 3 over the entire surface of the airfoil.

The computed Mach contours and eddy viscosity contours are similar to those depicted in Fig-

ures 2 and 3, except in the near-wall regions, where both quantities vanish rapidly. The com-

puted surface pressure and skin-friction distributions are compared with experimental data in

Figures 17 and 18. The computed lift is slightly lower than that predicted with the wall func-

tions and that previously obtained using an algebraic model [7]. At present, it is not clear

whether this is due to the actual model formulation, or is associated with the present imple-

mentation (artificial dissipation, grid resolution). However, the differences are rather small and

the skin friction appears to be well predicted. The convergence of the density equation and the

two turbulence equations is depicted in Figure 19, where the residuals are plotted versus the

number of multigrid cycles on the finest grid. The flowfield and turbulence equations are all

initialized with uniform freestream values, and 25 cycles were performed on the previous

coarser grid using wall functions, prior to initializing the solution procedure on the finest grid.

Initializing the calculation with freestream values for all equations on the finest grid has also

been employed with little degradation in convergence. From Figure 19, all equations are seen

to converge at approximately the same rate, resulting in a residual reduction of 4 to 5 orders of

magnitude over 300 multigrid cycles.

The final case involves the transonic flow over a two-element airfoil. This case illustrates

the ease with which complex geometries and flows with multiple viscous layers may be han-

dled by the present methodology. The mesh employed is depicted in Figure 20. It contains a

total of 28,871 vertices, with a normal spacing of 2x 10-5 chords off the wall for each airfoil
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element.ThefreestreamMachnumberis 0.5, the incidenceis 7.5degrees,andthe Reynolds
numberis 4.5 million.ThecomputedMachcontoursand eddy viscosity contours are depicted

in Figures 21 and 22. At these conditions, the flow is supercritical and a shock is formed on

the upper surface of the slat. A small region of separated flow occurs behind the shock, as can

be seen from the skin friction plot of Figure 23. This region of separation has previously been

reported in prior calculations using an algebraic turbulence model [7]. The computed surface

pressure distribution is seen to compare favorably with experimental wind-tunnel data [24], in

Figure 24. The convergence rate for this case is depicted in Figure 25, where the residuals of

the density equation and the two turbulence equations are reduced by approximately 3 to 4 ord-

ers of magnitude over 300 cycles on the finest grid.

11. CONCLUSION

A multigrid strategy for solving the steady-state high and low-Reynolds number k - e tur-

bulence equations has been formulated and implemented on unstructured meshes. A variety of

aerodynamic flows have been computed, consistently demonstrating similar convergence rates

for the turbulence and flow equations. Initialization of all flow and turbulence quantities may

be performed using uniform freestream values. At present, the evalUation of the turbulence

terms requires a significant fraction of the overall time within a single time-step. For example,

the RAE 2822 supercritical airfoil flow case with the low-Reynolds-number turbulence model

requires roughly 2.5 seconds per muIdgrid cycle on a single processor of the CRAY-YMP

supercomputer, which is almost 75% higher than that required by the algebraic model reported

previously [7]. However, it is estimated that this can be substantially reduced by assembling

the turbulence and flow residuals simultaneously within a single loop. Given the demonstrated

convergence rates, the two-equation turbulence model should be competitive in terms of com-

puter resources with algebraic models, while providing much greater flexibility in dealing with
complex geometries and flow-fields, i _

Future work should involve a more thorough investigation of the various two-equation

turbulence models and their ability in predicting complex aerodynamic flows, including flows

with massive separation.
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Figure 1

Unstructured Mesh Employed for Computing Flow Over an RAE 2822 Airfoil
(Number of Vertices = 12,823)
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Figure 2

Computed Mach Contours for TurbUlent Flow over RAE 2822 Airfoil

Using Wall Functions (Mach = 0.729, Re = 6.5 million, Incidence = 2.31 degrees)
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Figure 3
Computed Eddy Viscosity Contours for Turbulent Flow over RAE 2822 Airfoil

Using Wall Functions ( Mach = 0.729, Re = 6.5 million, Incidence =2.31 degrees )
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Figure 4

Comparison of Computed Surface Pressure using Wail Functions with Experimental
Measurements for Flow over an RAE 2822 Airfoil

(Mach = 0.729, Re = 6.5 million, Incidence = 2.31 degrees)
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Figure 5
Convergence Rate of Density Equation and K equation Using Wall Functions
versus the Number of Multigrid Cycles for Flow over an RAE 2822 Airfoil
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Figure 6
Unstructured Mesh Employed for Computing Flow Over a Four-Element Airfoil

(Number of Vertices = 51,100)
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Figure 7
Computed Mach Contours Using Wall Functions for Flow over a Four-Element Airfoil

(Mach= 0.2, Re ffi2.83 million, Incidence ffi8.18 degrees)
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Figure 8
Computed Eddy Viscosity Contours Using Wall Functions for Flow over a Four-Element Airfoil

(Mach = 0.2, Re = 2.83 million, Incidence = 8.18 degrees)
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Figure 9
Comparison of Computed Surface Pressure using Wall Functions with Experimental

Wind-Tunnel Data for Flow over a Four-Element Airfoil

(Mach = 0.2, Re = 2.83 million, Incidence = 8.18 degrees)
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Figure 11

Triangular Mesh Employed for Flat Plate Boundary Layer Calculation
(Number of Vertices = 5913, 10:1 Magnification in Y-direction)
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Figure 12
Computed Velocity Profile in Physical Coordinates Versus the 1/7th Power Law Profile

(Mach = 0.3, Re:, = 5.3 million)
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Figure 13

Computed Velocity Profile in Logarithmic Coordinates Versus Logarithmic Law of the Wall
(Mach = 0.3, Rex = 5.3 million)
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Figure 14 : _: :_
Computed Skin Fricti0n Distribution for Flat Plate Boundary Layer

Versus Experimental Data from [23]
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Computed Near Wall Distribution of k + for FlatPlate Boundary Layer

(Mach = 0.3, Rex = 5.3 million)
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Figure 16
Computed NearWall Distributionofe+forFiatPlateBoundaryLayer

(Mach = 0.3,Re_ = 513million)
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Figure 17

Computed Surface Pressure Distribution Using Low-Reynolds Number Modification
for Turbulence Equations Versus Experimental Data for Flow past RAE 2822 Airfoil

(Mach = 0.729, Re = 6.5 million, Incidence = 2.31 degrees)
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Figure 18
Computed Skin-Friction Distribution Using Low-Reynolds Number.... Modification

for Turbulence Equations Versus Experimental Data for Flow past RAE 2822 Airfoil

(Mach = 0.729, Re = 6.5 million, Incidence = 2.31 degrees)
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Figure 19

Convergence Rate of the Density Equation and the Two Turbulence Equations
Modified for Low-Reynolds Number Effects Versus the Number of Multigrid Cycles for Flow Past RAE 2822 Airfoil
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Figure20

GlobalView ofCoarseUnstructuredMesh and Close-UpView ofFine

UnstructuredMesh Employed forComputingFlow Pasta Two-EIcmcntAirfoil

(Coar_ Mesh Points= 7272,FineMesh Points= 28871)
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Figure 21
Computed Mach Contours Using Low-Reynolds Number Modification for Turbulence

Equations for SupercdticalFlow over a Two-Element Airfoil
(Mach= 0.5, Re = 4.5 million, Incidence= 7.5 degrees)
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Figure 22
Computed Eddy Viscosity Contours Using Low-Reynolds Number Modification

for Turbulence Equations for Supercritical Flow over a Two-Element Airfoil
(Mach -- 0.5, Re = 4,5 million, Incidence = 7.5 degrees)
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Figure 23

Computed Skin-Friction Distribution on Slat Showing Region of Separated

Flow Behind Upper Surface Shock (Mach = 0.5, Re = 4.5 million, Incidence = 7.5 degrees)
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Figure 24
Computed Surface Pressure Distribution Using Low-Reynolds Number Modification

for Turbulence Equations for Supercritical Flow over a Two-Element Airfoil
Versus Experimental Wind Tunnel Data

(Mach = 0.5, Re -- 4.5 million, Incidence = 7.5 degrees)



-39-

o

g
r4

g
<:5

g

g

8.

igt

8.

8
<5

, 0 too 2oo 3oo 40o 500

Number of Cycles

8

Figure 25
Multigrid Convergence Rate of the Density Equation and the Two Turbulence

Equations Using Low-Reynolds Number Modifications for Flow Over
Two-Element Airfoil (Mach = 0.5, Re = 4.5 million, Incidence = 7.5 degrees)
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